Increasing the Diameter of Cylindrical and Spherical Supramolecular Dendrimers by Decreasing the Solid Angle of Their Monodendrons via Periphery Functionalization

Virgil Percec,*,[†] Wook-Dong Cho,[†] and Goran Ungar[‡]

Contribution from the Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, and Department of Engineering Materials and Center for Molecular Materials, University of Sheffield, Sheffield S1 3JD, U.K.

Received July 6, 2000

Abstract: The synthesis of three generations of self-assembling monodendrons based on an internal AB₃ 3,4,5trisubstituted benzyl ether repeat unit containing an AB₂ 3,4-bis[p-(n-dodecan-1-yloxy)benzyloxy]benzyl ether monodendron [(4-3,4)12G1-X] attached on the periphery and the structural analysis of the corresponding supramolecular dendrimers by X-ray diffraction (XRD) experiments are described. The results from these experiments are compared with data reported previously from our laboratory on three generations of monodendrons based on the same internal AB₃ repeat unit containing an AB₃ 3,4,5-tris[*p*-(*n*-dodecan-1-yloxy)benzyloxy]benzyl ether monodendron [(4-3,4,5)12G1-X] on the periphery (Percec, V.; Cho, W.-D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061). In both series of monodendrons, the solid angle of the monodendron increases with the increase of the generation number. As a result, the increase in the diameter of the cylindrical and spherical supramolecular dendrimers is smaller than the one expected from the fully extended monodendritic repeat unit. For the same internal repeat unit, the solid angle of the monodendron is determined by the solid angle of the unit attached to its periphery. The (4-3,4)12G1-X AB₂ group attached to the periphery of the monodendrons decreases their solid angle by comparison with the series containing the (4-3,4,5)12G1-X AB₃ group on their periphery, and subsequently, the AB₂ group increases the diameter of the supramolecular dendrimers. The elucidation of this architectural effect clarifies some of the current limitations and provides new strategies for the design of functional nanosystems from dendritic building blocks.

Introduction

In a series of publications from our laboratory, we have reported the elaboration of synthetic and structural analysis strategies that are currently employed in the design of monodendritic building blocks that self-assemble in bulk into spherical,¹⁻⁴ cylindrical,^{2,3,5,6} and more complex⁷ supramolecular

(2) Hudson, S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.;

(d) Hudsin, D. D., Sing, H. 1919,

(4) Yeardley, D. J. P.; Ungar, G.; Percec, V.; Holerca, M. N.; Johansson, G. J. Am. Chem. Soc. 2000, 122, 1684.

and macromolecular dendrimers. The spherical supramolecular and macromolecular dendrimers self-organize in $Pm\bar{3}n^{1a,2}$ and $Im\bar{3}m^4$ cubic lattices, while the cylindrical supramolecular and macromolecular dendrimers self-organize in a $p6mm^5$ hexagonal columnar lattice (Scheme 1). The reversible and irreversible interconversion of these lattices and of their supramolecular dendrimers is also of interest to researchers in our laboratory (Scheme 1).1b,d,3 These lattices provided access to the determination of the shape and size of supramolecular dendrimers and of the corresponding monodendrons by X-ray diffraction experiments.^{1a,4,5,7} Since both self-organizing⁸ and non-self-

^{*} To whom correspondence should be addressed. E-mail: percec@ sas.upenn.edu.

University of Pennsylvania.

[‡] University of Sheffield.

^{(1) (}a) Balagurusamy, V. S. K.; Ungar, G.; Percec, V.; Johansson, G. J. Am. Chem. Soc. 1997, 119, 1539. (b) Percec, V.; Cho, W.-D.; Mosier, P. E.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 11061. (c) Percec, V.; Cho, W.-D.; Möller, M.; Prokhorova, S. A.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 2000, 122, 4249. (d) Ungar, G.; Percec, V.; Holerca, M. N.; Johansson, G.; Heck, J. Chem. Eur. J. 2000, 6, 1258.

^{(5) (}a) Percec, V.; Johansson, G.; Heck, J.; Ungar, G.; Batty, S. V. J. Chem. Soc., Perkin Trans. 1 1993, 1411. (b) Percec, V.; Heck, J. A.; Tomazos, D.; Ungar, G. J. Chem. Soc., Perkin Trans. 2 1993, 2381. (c) Percec, V.; Heck, J.; Tomazos, D.; Falkenberg, F.; Blackwell, H.; Ungar, G. J. Chem. Soc., Perkin Trans. 1 1993, 2799. (d) Percec, V.; Tomazos, D.; Heck, J.; Blackwell, H.; Ungar, G. J. Chem. Soc., Perkin Trans. 2 1994, 31. (e) Johansson, G.; Percec, V.; Ungar, G.; Abramic, D. J. Chem. Soc., Perkin Trans. 1 1994, 447. (f) Percec, V.; Johansson, G.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1996, 118, 9855. (g) Percec, V.; Cho, W.-D.; Ungar, G.; Yeardley, D. J. P. Angew. Chem. 2000, 112, 1661; Angew. Chem., Int. Ed. 2000, 39, 1597.

^{(6) (}a) Percec, V.; Schlueter, D.; Ungar, G.; Cheng, S. Z. D.; Zhang, A. *Macromolecules* **1998**, *31*, 1745. (b) Percec, V.; Ahn, C.-H.; Cho, W.-D.; Jamieson, A. M.; Kim, J.; Leman, T.; Schmidt, M.; Gerle, M.; Möller, M.; Prokhorova, S. A.; Sheiko, S. S.; Cheng, S. Z. D.; Zhang, A.; Ungar, G.; Yeardley, D. J. P. J. Am. Chem. Soc. 1998, 120, 8619. (c) Prokhorova, S. A.; Sheiko, S. S.; Möller, M.; Ahn, C.-H.; Percec, V. Macromol. Rapid Commun. 1998, 19, 359. (d) Percec, V.; Schlueter, D. Macromolecules 1997, 30, 5783. (e) Kwon, Y. K.; Chvalun, S. N.; Blackwell, J.; Percec, V.; Heck, J. A. Macromolecules 1995, 28, 1552. (f) Chvalun, S. N.; Blackwell, J.; Cho, J. D.; Bykova, I. V.; Percec, V. Acta Polym. 1999, 50, 51. (g) Kwon, Y. K.; Chvalun, S. N.; Schneider, A.-I.; Blackwell, J.; Percec, V.; Heck, J. A. Macromolecules 1994, 27, 6129. (h) Percec, V.; Schlueter, D.; Kwon, Y. K.; Blackwell, J.; Möller, M.; Slangen, P. Macromolecules 1994, 28, 8807. (i) Johansson, G.; Percec, V.; Ungar, G.; Zhou, J. P. Macromolecules 1996, 29, 646. (j) Percec, V.; Johansson, G.; Schlueter, D.; Ronda, J. C.; Ungar, G. Macromol. Symp. 1996, 101, 43. (k) Percec, V.; Ahn, C.-H.; Cho, W.-D.; Johansson, G.; Schlueter, D. Macromol. Symp. 1997, 118, 33. (7) (a) Percec, V.; Chu, P.; Ungar, G.; Zhou, J. J. Am. Chem. Soc. 1995, 117, 11441. (b) Percec, V.; Ahn, C.-H.; Bera, T. K.; Ungar, G.; Yeardley, D. J. P. Chem. Eur. J. 1999, 5, 1070.

Scheme 1. Schematic Representation of (A) the Self-Assembly of Building Blocks Based on Flat Tapered Monodendrons into Supramolecular Cylindrical Dendrimers and Their Subsequent Self-Organization in a *p6mm* Hexagonal Columnar (Φ_h) Lattice and (B) the Self-Assembly of the Conical and Hemispherical Monodendrons into Supramolecular Spherical Dendrimers and Their Subsequent Self-Organization in *Pm3n* and *Im3m* Cubic (Cub) Lattices

X = endo receptor or functional group

organizing⁹ building blocks derived from dendritic units are used for the construction of functional nanosystems, the elucidation of the structural principles involved in their self-assembly and self-organization are of general interest.

Most of the monodendritic building blocks investigated in our laboratory are based on an AB₃ 3,4,5-trisubstituted benzyl ether repeat unit.^{1–7} Three libraries containing from three to

five generations of AB₃ benzyl ether monodendrons^{1a-c} with different first-generation monodendritic units on their periphery were investigated to establish the structural parameters that govern the shape and size of the higher generation monodendrons and of the corresponding supramolecular dendrimers in bulk state. The structure and shape of the second-generation monodendrons and supramolecular dendrimers from these three libraries together with their structural parameters obtained from the X-ray analysis of their lattices are summarized in Scheme 2. As observed from this scheme, for the same internal repeat unit, the shape and size of monodendrons and supramolecular dendrimers are determined mainly by the structure of the monodendritic unit attached to their periphery and, to less extent, by the functional group from their apex. For example, the replacement of a 3,4,5-tris(n-dodecan-1-yloxy)benzyl ether^{1a} from the periphery of $(3,4,5)^2$ 12G2-X with a 3,4,-bis(*n*-dodecan-1-yloxy)benzyl ether^{1c} group provides (3,4-3,4,5)12G2-X (Scheme 2). This structural change increases both the diameter of the supramolecular spherical dendrimer from D = 42.4 Å to D =51.8 Å and the number of conical monodendrons required to assemble the spherical dendrimer from $\mu = 12$ to $\mu = 28$. Simultaneously, the replacement of the 3,4,5-tris(n-dodecan-1yloxy)benzyl ether^{1a} from the periphery of $(3,4,5)^2$ 12G2-X with 3,4,5-tris[*p*-(*n*-dodecan-1-yloxy)benzyloxy]benzyl ether^{1b} produces (4-(3,4,5)²)12G2-X (Scheme 2). This architectural modification changes the shape of the supramolecular dendrimer from spherical to cylindrical.

A recent publication from our laboratory^{1d} demonstrated that the size and shape of a supramolecular dendrimer are determined by the solid angle of the monodendron. In that publication, it was shown that the solid angle of a monodendron is determined by the volume of the functionality present in the monodendron apex.^{1d} Therefore, the solid angle of the monodendron seems to be determined both by the volume of the functionality from the dendritic apex and by the architecture of the repeat unit from its periphery. Consequently, we have decided to investigate the capability of the monodendritic unit from the periphery toward the control of the solid angle of the monodendron in order to correlate the effect of its architecture with the size and shape of the resulting supramolecular dendrimer. This publication describes the synthesis and the structural analysis of the first three generations of AB₃ 3,4,5-trisubstituted benzyl ether monodendrons containing on their periphery a 3,4-bis[p-(ndodecan-1-yloxy)benzyloxy]benzyl ether AB2 group [(4-3,4)-12G1-X]. This is the fourth and the last library from the series of self-assembling AB₃ monodendrons.^{1a-c} This library is complementary to the one containing the 3,4,5-tris[*p*-(*n*-dodecan-1-yloxy)benzyloxy]benzyl ether AB₃ group [(4-3,4,5)12G1-X] on the periphery (see the last column in Scheme 2)^{1b} and will demonstrate the complexity involved in the design of supramolecular dendrimers via their periphery functionalization approach.

Results and Discussion

The synthesis of methyl 3,4-bis[p-(n-dodecan-1-yloxy)benzyloxy]benzyl ether benzoate [(4-3,4)12G1-CO₂CH₃] is outlined in Scheme 3. The detailed synthesis of this compound was reported previously.^{6b} It follows the procedure elaborated in our laboratory for the synthesis of methyl 3,4,5-tris[p-(n-dodecan-1-yloxy)benzyloxy]benzoate [(4-3,4,5)12G1-CO₂CH₃].^{1b} 3,4-Bis[p-(n-dodecan-1-yloxy)benzyloxy]benzoic acid [(4-3,4)-12G1-COOH] was prepared by the basic hydrolysis of (4-3,4)12G1-CO₂CH₃ as reported previously.^{6b} The synthesis of the next two generations of monodendrons was performed via

^{(8) (}a) Pesak, D. J.; Moore, J. S. Angew. Chem., Int. Ed. Engl. 1997, 36, 1636.
(b) Suárez, M.; Lehn, J.-M.; Zimmerman, S. C.; Skoulios, A.; Heinrich. B. J. Am. Chem. Soc. 1998, 120, 9526.
(c) Meier, H.; Lehmann, M. Angew. Chem., Int. Ed. 1998, 37, 643.

^{(9) (}a) Fréchet, J. M. J. Science 1994, 263, 1710. (b) Tomalia, D. A. Adv. Mater. 1994, 6, 529. (c) Newkome, G. R.; Moorefield, C. N.; Vögtle, F. Dendritic Molecules. Concepts, Synthesis, Perspectives; VCH: Weinheim, 1996. (d) Moore, J. S. Acc. Chem. Res. 1997, 30, 402. (e) Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681. (f) Fischer, M.; Vögtle, F. Angew. Chem., Int. Ed. 1999, 38, 884. (g) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1665. (h) Moore, J. S. Curr. Opin. Colloid Interface Sci. 1999, 4, 108. (i) Schlüter, A. D.; Rabe, J. P. Angew. Chem., Int. Ed. 2000, 39, 864. (j) Jang, W.-D.; Jiang, D.-L.; Aida, T. J. Am. Chem. Soc. 2000, 122, 3232.

Scheme 2. Structural Analysis of AB_3 Trisubstituted Second-Generation Monodendrons and Supramolecular Dendrimers Containing on Their Periphery Various AB_3 or AB_2 Monodendrons^{*a*}

^{*a*} Data are from refs 1a-c.

a convergent approach¹⁰ and follows the general procedure elaborated in our laboratory for the synthesis of monodendritic benzyl ethers.^{1a-c} In this particular case, it involves the reduction of (4-3,4)12G1-CO₂CH₃ with LiAlH₄ in THF to produce (4-3,4)12G1-CH₂OH in 94.5% yield, followed by chlorination with SOCl₂ in CH₂Cl₂ in the presence of 2,6-di-tert-butyl-4methylpyridine $(\mathbf{DTBMP})^{1a-c,12}$ proton trap to produce (4-3,4)-12G1-CH₂Cl in 100% yield. Etherification of methyl 3,4,5trihydroxybenzoate with freshly prepared (4-3,4)12G1-CH₂Cl was performed in a mixture of THF/DMF = 200/30 at 70 °C in the presence of K₂CO₃ as base for 4 h. (4-3,4-3,4,5)12G2-CO₂CH₃ was obtained in 76.3% yield after purification by column chromatography (basic Al₂O₃, CH₂Cl₂) and recrystallization from a mixture of acetone/CH₂Cl₂ (1/3, 500 mL). Reduction of (4-3,4-3,4,5)12G2-CO₂CH₃ with LiAlH₄ in THF produced (4-3,4-3,4,5)12G2-CH2OH in 86.7% yield. Its chlorination with SOCl₂ in the presence of DTBMP produced (4-3,4-3,4,5)12G2-CH₂Cl, which was used without purification in the etherification of methyl 3,4,5-trihydroxybenzoate (DMF/

THF = 140/40 (v/v) in the presence of K₂CO₃ at 70 °C). After 6 h of reaction time, $(4-3,4-(3,4,5)^2)12G3-CO_2CH_3$ was obtained in 46.8% yield after purification by column chromatography (basic Al₂O₃, CH₂Cl₂) and recrystallization from acetone/ CH₂Cl₂ = 1/3.

The structure of monodendrons and intermediary compounds was confirmed by a combination of ¹H NMR, ¹³C NMR, thinlayer chromatography (TLC), high-pressure liquid chromatography (HPLC), elemental analysis, and gel permeation chromatography (GPC). The quantitative etherification of the methyl 3,4,5-trihydroxybenzoate was monitored by the disappearance of the benzylic CH₂Cl protons at 4.50 ppm in the ¹H NMR spectrum and of the $(4-3,4-(3,4,5)^{n-1})$ 12Gn-CH₂Cl peak in HPLC. Figure 1 shows representative GPC traces of (4-3,4)-12G1-CO₂CH₃, (4-3,4-3,4,5)12G2-CO₂CH₃, and (4-3,4-(3,4,5)²)-12G3-CO₂CH₃ monodendrons. The 2-fold increase in molecular weight from generation one to generation two and the 3-fold increase from generation two to generation three allows the monitoring of the etherification process by both HPLC and GPC since all GPC traces are well separated (Figure 1). The difference between the theoretical and experimental molecular weights (relative to polystyrene standards) is due to the difference

⁽¹⁰⁾ Hawker, C.; Fréchet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638.
(11) Ungar, G.; Abramic, D.; Percec, V.; Heck, J. A. Liq. Cryst. 1996, 21, 73.

^{*a*} Reagents and conditions: (i) K₂CO₃, DMF, 70 °C; (ii) LiAlH₄, THF, 20 °C; (iii) SOCl₂, CH₂Cl₂, DMF (catalytic), 20 °C; (iv) SOCl₂, DTBMP, CH₂Cl₂, 20 °C; (v) K₂CO₃, DMF, THF, 70 °C.

between the hydrodynamic volume of polystyrene and of the monodendrons and agrees with previous results for our laboratory.^{1a}

The structural analysis of the supramolecular dendrimers selfassembled in bulk from these monodendrons was carried out by a combination of differential scanning calorimetry (DSC), thermal optical polarized microscopy (TOPM), and X-ray diffraction (XRD) experiments according to standard methods used in our laboratory.^{1,4–7} The transition temperatures together with the corresponding enthalpy changes are summarized in Table 1. (*4-3,4*)12G1-CO₂CH₃ displays a monotropic hexagonal columnar (Φ_h) phase. (*4-3,4*)12G1-COOH exhibits an enantiotropic Φ_h phase. (4-3,4-3,4,5)12G2-CO₂CH₃ and (4-3,4-(3,4,5)²)12G3-CO₂CH₃ display enantiotropic cubic (Cub) phases. All supramolecular dendrimers display additional crystalline phases which were not analyzed in detail by XRD. The *d*-spacings of the Φ_h and Cub lattices are reported in Table 2. The results from Table 2 were used to assign the lattice symmetries^{1a,d,5f} and subsequently to calculate, with the aid of densities (ρ_{20}), the data from Table 3. Table 3 summarizes the lattice symmetry, lattice dimensions (*a*) of all supramolecular dendrimers, their experimental diameter (D_{exp}), the diameter of the supramolecular dendrimer based on the fully extended conformation of two monodendrons (D_{ext}), the number of mono-

Figure 1. GPC traces with M_n and M_w/M_n values determined by GPC with polystyrene standards for $(4-3,4-(3,4,5)^{n-1})12Gn-CO_2CH_3$ with n = 1-3.

dendrons that form a $Pm\bar{3}n$ lattice (μ') and a spherical supramolecular dendrimer (μ) , the number of monodendrons that form a 4.7 Å cross section¹¹ of the cylindrical supramolecular dendrimer or a spherical supramolecular dendrimer (μ) , the projection of the solid angle (i.e., the planar angle) of the tapered and conical monodendrons (α' in °), and the density at 20 °C (ρ_{20}). The structural analysis results from Table 3 were used to generate the schematic of self-assembly outlined in the upper part of Scheme 4. As illustrated by this scheme, (4-3,4)-12G1-X displays a tapered shape while (4-3,4-3,4,5)12G2-X and (4-3,4-(3,4,5)²)12G3-X exhibit conical shapes. Twelve (4-3,4)12G1-CO₂CH₃, and respectively eleven (4-3,4)12G1-**COOH**, tapered monodendrons self-assemble in a 4.7 Å cross section of a cylindrical supramolecular dendrimer which selforganizes in a *p6mm* hexagonal columnar lattice. Forty-three (4-3,4-3,4,5)12G2-CO₂CH₃, and respectively thirteen (4-3,4-(3,4,5)²)12G3-CO₂CH₃, conical monodendrons self-assemble in spherical supramolecular dendrimers that self-organize in a $Pm\overline{3}n$ cubic lattice.

The solid angle of the conical monodendron is defined as $\alpha = 4\pi/\mu$, where μ is the number of monodendrons that selfassemble in a spherical supramolecular dendrimer. The projection of the solid angle of the conical monodendron provides the planar angle defined as $\alpha' = \alpha/2 = 2\pi/\mu$. The projection of the solid angle of the tapered monodendron gives a planar angle that is also $\alpha' = 2\pi/\mu$. Therefore, the solid angle of a

Table 1. Theoretical and Experimental (by GPC) Molecular Weights and Thermal Transitions of Selected Examples $(4-3,4-(3,4,5)^{n-1})$ 12Gn-X (n = 1-3) Monodendrons

		Ma	$M_{\rm m}/M_{\rm m}$	thermal transitions (°C) and correspon	ding enthalpy changes (kcal/mol) ^a	
monodendron MW_{th} (GPC) (GPC)		heating	cooling			
(4-3,4)12G1-CO ₂ CH ₃	717.0	930	1.04	k^{b} 4 (1.96) k 60 (12.57) k 90 (0.11) k 99 (4.87) i ^c k 7 (1.64) k 55 (3.22) $\Phi_{h}{}^{d}$ 60 (2.03) i	i 54 (1.92) Φ_h 2 (2.51) k –24 (0.04) k	
(4-3,4)12G1-COOH	703.0	967	1.05	$k = 9$ (9.89) Φ_h 125 (18.17) i $k = 9$ (1.19) Φ_h 125 (19.22) i	i 114 (1.00) $\Phi_{\rm h}$ 110 (15.37) $\Phi_{\rm h}$ -15 (0.75) k	
(4-3,4-3,4,5)12G2- CO ₂ CH ₃	2197.2	3003	1.04	k –13 (8.61) k 74 (1.53) Cub ^e 183 (11.83) i k –21 (7.55) k 70 (0.95) Cub 182 (10.58) i	i 178 (10.37) Cub 43 (1.54) k –20 (4.52) k	
(4-3,4-(3,4,5) ²)12G3- CO ₂ CH ₃	6637.7	7360	1.07	k −16 (22.91) Cub 228 i ^{f.g}		

^{*a*} Data from the first heating and cooling scans are on the first line and data from the second heating are on the second line. ^{*b*} k = crystalline. ^{*c*} i = isotropic temperature. ^{*d*} Φ_h = hexagonal columnar *p6mm* lattice. ^{*e*} Cub = cubic *Pm3n* lattice. ^{*f*} Observed by thermal optical polarized microscopy. ^{*g*} Decomposition after first heating scan.

Table 2. Measured *d*-Spacings of the Hexagonal Columnar and Cubic Lattices of Selected Examples of $(4,3,4-(3,4,5)^{n-1})$ 12Gn-X (n = 1-3) Monodendrons

	T	100	110	200	210	211	220	310	222	320	321	400	420	421	332	422
monodendron	(°C)	(A)														
(4-3,4)12G1-CO ₂ CH ₃	57	49.7	28.9	24.9												
(4-3,4)12G1-COOH	77	46.6														
(4-3,4-3,4,5)12G2-CO ₂ CH ₃	117			53.2	47.6	43.5	37.9	33.8	31.0	29.7	28.6	26.8	23.9	23.3	21.9	21.5
(4-3,4-(3,4,5) ²)12G3-CO ₂ CH ₃	177		73.4	51.9	46.5	42.5	36.8	32.9	30.1	28.9	27.9	26.1	23.3	22.8		

Table 3. Structural Analysis of Supramolecular Dendrimers Self-Assembled from Selected Examples of $(4,3,4-(3,4,5)^{n-1})$ **12Gn-X** (n = 1-3) Monodendrons

monodendron	$T(^{\circ}C)$	lattice	$\langle d_{100} angle^a$ (Å)	a (Å)	$D_{\mathrm{exp}}(\mathrm{\AA})$	$D_{\mathrm{ext}}^{f}(\mathrm{\AA})$	μ'	μ	α'^{j}	$\rho_{20}{}^k (g/cm^3)$
(4-3,4)12G1-CO ₂ CH ₃	57	р6тт	49.9	57.6 ^b	57.6 ^d	58.7		12^{k}	30.0	1.05
(4-3,4)12G1-COOH	77	р6тт	46.6	53.8^{b}	53.8^{d}	56.1		11^{h}	32.7	1.04
(4-3,4-3,4,5)12G2-CO ₂ CH ₃	117	$Pm\overline{3}n$		106.5°	66.1^{e}	70.7	344^{g}	43^{i}	8.4	1.04
(4-3,4-(3,4,5) ²)12G3-CO ₂ CH ₃	177	$Pm\overline{3}n$		104.1^{c}	64.6 ^e	82.7	105^{g}	13^{i}	27.7	1.03

 ${}^{a}\langle d_{100}\rangle = (d_{100} + \sqrt{3}d_{110} + 2d_{200})/3. {}^{b} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Cubic lattice parameter } a = (\sqrt{2}d_{110} + \sqrt{4}d_{200})/3. {}^{b} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Cubic lattice parameter } a = (\sqrt{2}d_{110} + \sqrt{4}d_{200})/3. {}^{b} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Cubic lattice parameter } a = (\sqrt{2}d_{110} + \sqrt{4}d_{200})/3. {}^{b} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Cubic lattice parameter } a = (\sqrt{2}d_{110} + \sqrt{4}d_{200})/3. {}^{b} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Cubic lattice parameter } a = (\sqrt{2}d_{110} + \sqrt{4}d_{200})/3. {}^{b} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Cubic lattice parameter } a = (\sqrt{2}d_{110} + \sqrt{4}d_{200})/3. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Cubic lattice parameter } a = (\sqrt{2}d_{110} + \sqrt{4}d_{200})/3. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Cubic lattice parameter } a = (\sqrt{2}d_{110} + \sqrt{4}d_{200})/3. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columnar lattice parameter } a = 2\langle d_{100}\rangle/\sqrt{3}. {}^{c} \text{Hexagonal columna$

^d Columnar diameter $D_{exp} = 2\langle d_{100} \rangle \sqrt{3}$. ^e Spherical diameter $D_{exp} = 2\sqrt[3]{3a^3/32\pi}$. ^f D_{ext} = diameter of fully extended cylindrical or spherical dendrimers. ^g Number of monodendrons per unit cell $\mu' = (a^3N_A\rho)/M$. ^h Number of monodendrons per cylinder stratum of the supramolecular cylinder $\mu = (\sqrt{3}N_AD^2_{exp}t\rho)/2M$ (Avogadro's number, $N_A = 6.022045 \times 10^{23} \text{ mol}^{-1}$; the average height of the column stratum t = 4.7 Å; M = molecular mass of monodendron) (for details, see ref 5a). ⁱ Number of monodendrons per spherical dendrimer $\mu = \mu'/8$. ^j Projection of the solid angle for tapered and conical monodendron $\alpha' = 360/\mu$ (deg). ^k $\rho_{20} =$ experimental density at 20 °C.

Scheme 4. Structural Analysis of Three Generations of $(4-3,4-(3,4,5)^{n-1})12Gn-X$ and $(4-(3,4,5)^n)12Gn-X$ Monodendrons and of Their Supramolecular Dendrimers^{*a*}

^{*a*} Data for and $(4-(3,4,5)^n)$ 12Gn-X are from ref 1b. *a* (Å), lattice dimension; *D* (Å), diameter of the supramolecular columnar or spherical dendrimer; μ , number of monodendrons forming a 4.7 Å cross section of the supramolecular cylindrical dendrimer or the number of monodendrons forming the spherical supramolecular dendrimer; α' (deg), projection of the solid angle for tapered and conical monodendrons. The temperature of the XRD experiment in (°C) is reported between parentheses.

Scheme 5. Hierarchical Development of a Single-Sphere Monodendron Starting from Tapered or Conical Monodendrons

monodendron is directly proportional to its projected planar angle. Table 3 lists the values of the projections of the solid angle (α'), since they can be visualized for both the cases of tapered and conical monodendrons much more easily than their corresponding solid angles. The comparison of the D_{exp} , μ , and α' for (4-3,4-3,4,5)12G2-X and for (4-3,4-(3,4,5)²)12G3-X (Table 3 and Scheme 4) provides the most significant result. Although the transition from generation two to generation three should increase the theoretical radius of the fully extended supramolecular dendrimer with one benzyl ether unit (i.e., 6.0 Å) and the corresponding diameter with two benzyl ether units (i.e., 12.0 Å), the experimental diameter of the third generation, at the temperature at which it was determined, is lower than that of the second generation supramolecular dendrimer (64.6 Å vs 66.1 Å). This is partially due to the increase in α' from 8.4° to 27.7° and partially due to the higher temperature of the XRD experiment (177 °C for G3 versus 117 °C for G2). It is well established that the diameter of the supramolecular spherical dendrimers decreases with the increase in temperature.^{1d} The second column from Scheme 2 provides an example which shows that a 49 °C increase in temperature decreases the diameter by 3.5 Å. Although this comparison has only a relative meaning, correcting for the difference in temperature cannot bring the diameter to the expected value. Therefore, in contrast to the expected trend, when the generation number is increased, the diameter of the spherical supramolecular dendrimer increases much less than expected from its theoretical fully extended length of the aromatic part i.e., 12.0 Å per generation.

To compare the contribution of the solid or planar angle of the monodendron as it is determined by the structure of the repeat unit from its periphery, we compare in Scheme 4 the influence of μ and α' on D_{exp} of supramolecular dendrimers generated by the two libraries of monodendrons that have on their periphery 3,4,5-tris[*p*-(*n*-dodecan-1-yloxy)benzyloxy]benzyl ether^{1b} AB₃ groups (lower part of Scheme 4) and respectively 3,4-bis[*p*-(*n*-dodecan-1-yloxy)benzyloxy]benzyl ether AB₂ groups (upper part of Scheme 4). This comparison can be made only at the same generation number, where the theoretical diameter of the fully extended monodendron is identical regardless of the nature of the two different monodendritic units on their periphery. Scheme 4 is almost self-explanatory. (*4*-3,4,5)12G1-X self-assembles in a supramolecular cylinder that has a diameter that is between 13 and 17 Å smaller than the one generated from (4-3,4)12G1-X. The difference between these two dissimilar D_{exp} values that have identical fully extended theoretical diameters is determined by the number of monodendrons required to form the cross section of the supramolecular cylinder and their corresponding solid angle, i.e., $\mu = 4$ ($\alpha' = 90^{\circ}$) for the case of (4-3,4,5)12G1-X and respectively $\mu = 11$ ($\alpha' =$ 32.7°) or 12 ($\alpha' = 30.0^{\circ}$) for the case of (4-3,4)12G1-X. The number of monodendrons required to create a supramolecular dendrimer is proportional to the planar angle α' , i.e., $\mu = 4$ provides $\alpha' = 90^\circ$, while $\mu = 12$ and respectively 11 provide $\alpha' = 30.0^{\circ}$ and respectively 32.7°. Therefore, a larger μ provides a smaller α' and a larger diameter. The attachment of AB₃ and AB₂ monodendrons to the periphery of the AB₃ monodendrons transplants this trend from the first generation to the second and respectively to the third-generation monodendrons as well as to their corresponding supramolecular dendrimers (Scheme 4). At the second generation the two supramolecular dendrimers have different shapes i.e., cylindrical and spherical, and therefore, a direct comparison cannot be made. However, at the third generation the diameters of the two spherical supramolecular dendrimers follow the same trend as that of the corresponding first-generation cylindrical supramolecular dendrimers, i.e., the (4-3,4-(3,4,5)²)12G3-X-derived supramolecular dendrimer has a diameter that is larger than that of the (4-(3,4,5)³)12G3-X-derived supramolecular dendrimer with 9.1 Å. This is in spite of the fact that the former was determined at 177 °C and the latter at 140 °C. At the same temperature this difference would have to be even larger since with increasing the temperature the diameter decreases.^{1d} This result is complementary to that obtained with (4-3,4)12G1-X and (4-3,4,5)-12G1-X and demonstrates the capability to increase the diameter of both cylindrical and spherical supramolecular dendrimers based on the same internal repeat unit by attaching monodendrons of lower solid angle on their periphery. However, regardless of the repeat unit on their periphery and, therefore, of the initial solid angle of the monodendron, upon increasing the generation number the tapered monodendron changes its shape by becoming a half of a disk,^{1b} a disklike molecule,^{5g} and subsequently adopts a conical shape5g (Scheme 5). A conical

monodendron^{1a} becomes hemispherical and ultimately a single sphere.^{1c} This trend is illustrated in Scheme 5. The maximum size of the cylindrical and spherical supramolecular dendrimers constructed via these principles is therefore limited.

Conclusions

The results described in this publication demonstrate a very clear trend. With increasing generation number, the solid angle of the conical and flat tapered monodendrons increases, and as a consequence the diameter of the resulting supramolecular dendrimer increases with a much lower value than the one expected from its fully extended conformation. For the same generation number constructed from AB₃ internal repeat units, the solid angle of the monodendron and the diameter of the supramolecular dendrimer are determined by the solid angle of the monodendritic repeat unit attached to the periphery. An AB₂ vs AB₃ repeat unit on the periphery decreases the overall solid angle of the monodendron and subsequently increases the diameter of the corresponding supramolecular dendrimer. These results suggest an upper limit of the size of the supramolecular dendrimers that can be constructed via the current synthetic methodology. Upon increasing the generation number, all monodendrons increase their solid angle until they become a single sphere.^{1c} Therefore, the control of the size of supramolecular dendrimers synthesized from a certain repeat unit is determined both by the solid angle of the repeat unit attached to their periphery as demonstrated in this publication and by the volume of the functionality in their apex.^{1d} These two architectural parameters determine the solid angle of the selfassembling monodendron and can be used to control the diameter of the supramolecular dendrimer up to the generation number before the monodendron shape becomes spherical. These results show some of the limitations of the dendritic architectural motifs but also open numerous new strategies for the design of functional nanosystems.

Experimental Section

A. Materials. Methyl 4-hydroxybenzoate (99%), 1-bromododecane (97%), 3,4-dihydroxybenzoic acid (97%), methyl 3,4,5-trihydroxybenzoate (98%), LiAlH₄ (95+%), SOCl₂ (99.5+%) (all from Aldrich), anhydrous K₂CO₃, DMF, and acetone (from Fisher, ACS. reagent) were all used as received. THF (from Fisher, ACS reagent) was refluxed over sodium ketyl until the solution turned purple and then distilled before use. CH₂Cl₂ (from Fisher, ACS. reagent) was dried over CaH₂ and freshly distilled before use.

B. Techniques. ¹H NMR (200 MHz) and ¹³C NMR (50 MHz) spectra were recorded on a Varian Gemini 200 spectrometer at 20 °C with tetramethylsilane (TMS) as internal standard. The purity of products was determined by a combination of thin-layer chromatography (TLC) on silica gel plates (Kodak) with fluorescent indicator and highpressure liquid chromatography (HPLC) using a Perkin-Elmer Series 10 high-pressure liquid chromatograph equipped with an LC-100 column oven, a Nelson Analytical 900 series integrator data station, and two Perkin-Elmer PL gel columns of 5×10^2 and 1×10^4 Å. THF was used as solvent at an oven temperature of 40 °C. Detection was by UV absorbance at 254 nm. Relative weight-average (M_w) and number-average (M_n) molecular weights were determined on the same instrument from a calibration plot constructed with polystyrene standards. Thermal transitions were measured on a Perkin-Elmer DSC-7 differential scanning calorimer (DSC) equipped with a TADS data station. In all cases, the heating and cooling rates were 10 °C/min. First-order transition temperatures were reported as the maxima and minima of their endothermic and exothermic peaks. Indium and zinc were used as calibration standards. An Olympus BX-40 thermal optical polarized microscope (TOPM) ($100 \times$ magnification) equipped with a Mettler FP 82 hot stage and a Mettler FP 80 central processor was used to verify thermal transitions and characterize the anisotropic

textures. Small-angle X-ray diffractograms (SAXD) from powder samples were recorded with a quadrant detector at Station 8.2 of the Synchrotron Radiation Source at Daresbury, UK. Small- and wide-angle X-ray diffractograms from monodomain samples were recorded with an image plate area detector (MAR Research) using graphite-monochromatized Cu K α radiation. In both cases, samples in glass capillaries were held in a custom-built temperature cell controlled to within ± 0.1 °C. The beampath up to the beamstop was either evacuated or flushed with N₂. Densities (ρ_{20}) were determined by flotation in gradient columns at 20 °C. Elemental analyses of all new compounds (M-H-W Laboratories, Phoenix, AZ) agree with the calculated value within $\pm 0.4\%$.

C. Synthesis. 2,6-Di-*tert*-butyl-4-methylpyridine (**DTBMP**),¹² methyl p-(n-dodecan-1-yloxy)benzoate,¹³ p-(n-dodecan-1-yloxy)benzyl alcohol,¹⁴ p-(n-dodecan-1-yloxy)benzyl chloride,^{6b} methyl 3,4-bis[p-(n-dodecan-1-yloxy)benzyloxy]benzoate [(4-3,4)12G1-CO₂CH₃],^{6b} and 3,4-bis[p-(n-dodecan-1-yloxy)benzyloxy]benzoic acid [(4-3,4)12G1-COOH]^{6b} were synthesized as described previously.

General Procedure for the Synthesis of $(4-3,4-(3,4,5)^{n-1})$ 12Gn-CH2OH. 3,4-Bis[p-(n-dodecan-1-yloxy)benzyloxy]benzyl Alcohol [(4-3,4)12G1-CH₂OH]. The benzyl alcohol was synthesized by the reduction of the methyl 3,4-bis[p-(n-dodecan-1-yloxy)benzyloxy]benzoate [(4-3,4)12G1-CO₂CH₃] with LiAlH₄. Into a three-neck roundbottom flask, equipped with a condenser, an ice bath, an N2 inletoutlet, and a Teflon-coated magnetic stirrer, containing a suspension of LiAlH₄ (8.26 g, 0.218 mol) in dry THF (900 mL), was added (4-3,4)12G1-CO₂CH₃ (130 g, 0.181 mol) slowly under a flow of N₂, and the mixture was stirred for 2 h at room temperature. The reduction was shown to be complete by TLC and ¹H NMR analyses. The reaction mixture was quenched by successive dropwise addition of 9 mL of H₂O, 9 mL of 15% NaOH, and 27 mL of H₂O. At this point, H₂ evolution ceased. The granular salts were filtered and washed with THF. The solvent was distilled on a rotary evaporator, and the remaining solid was recrystallized from acetone/CH2Cl2 (5:1, 1000 mL) to yield 118 g (94.5%) of white crystals. Purity (HPLC): 99+%. Isotropic temperature: 97 °C. TLC (3/1 hexane/EtOAc): $R_f = 0.25$. ¹H NMR $(CDCl_3, \delta, ppm, TMS)$: 0.89 (t, 6H, $CH_3, J = 6.6$ Hz), 1.28 (m, 36H, CH₃(CH₂)₉), 1.79 (m, 4H, CH₂CH₂OAr), 3.96 (t, 4H, CH₂CH₂OAr, J = 6.5 Hz), 4.58 (s, 2H, CH₂OH), 5.07 (s, 2H, ArCH₂OAr, 4 position), 5.08 (s, 2H, ArCH₂OAr, 3 position), 6.84-6.94 (overlapped m, 6H, ArH meta to CH₂OAr, 3,4 positions, ArH (5) meta to CH₂OH, ArH (6) ortho to CH₂OH), 7.00 (d, 1H, ArH (2) ortho to CH₂OH, J = 1.7Hz), 7.30-7.37 (overlapped m, 4H, ArH ortho to CH₂OAr, 3,4 positions). ¹³C NMR (CDCl₃, δ, ppm, TMS): 14.1 (CH₃), 22.7 (CH₂-CH₃), 26.0 (CH₂CH₂CH₂OAr), 29.3 (CH₃(CH₂)₂CH₂), 29.6 (CH₃(CH₂)₃-(CH₂)₅), 30.4 (CH₂CH₂OAr), 31.9 (CH₃CH₂CH₂), 64.9 (CH₂OH), 67.9 (CH₂CH₂OAr, 3,4-(4') positions), 71.0 (ArCH₂OAr, 3 position), 71.3 (ArCH₂OAr, 4 position), 114.2 (ArC (5) meta to CH₂OH), 114.3 (ArC meta to CH₂OAr, 3,4 positions), 115.4 (ArC (2) ortho to CH₂OH), 120.0 (ArC (6) ortho to CH₂OH), 129.0 (ArC ipso to CH₂OAr, 3,4 positions, ArC ortho to CH₂OAr, 3,4 positions), 134.5 (ArC ipso to CH₂OH), 149.2 (ArC (3) meta to CH₂OH, ArC para to CH₂OH), 158.8 (ArC para to CH₂OAr, 3,4 positions). Anal. Calcd for C₄₅H₆₈O₅: C, 78.44; H, 9.95. Found: C, 78.33; H, 9.97.

General Procedure for the Synthesis of Benzyl Chlorides. Benzyl chlorides were synthesized by the chlorination of the corresponding benzyl alcohols with SOCl₂ in the presence of DTBMP.

3,4-Bis[*p*-(*n*-dodecan-1-yloxy)benzyloxy]benzyl Chloride [(*4-3,4*)-12G1-CH₂Cl]. Into a 250-mL one-neck round-bottom flask, equipped with a magnetic stirrer and an addition funnel, were placed (*4-3,4*)-12G1-CH₂OH (5.00 g, 7.26 mmol) and DTBMP (2.98 g, 14.5 mmol) in dry CH₂Cl₂ (100 mL). A mixture of SOCl₂ (0.864 g, 7.26 mmol) and CH₂Cl₂ (10 mL) was added dropwise at room temperature. After the addition was complete, quantitative conversion was observed by a combination of ¹H NMR spectroscopy and TLC. The solvent was

⁽¹²⁾ Anderson, A. G.; Stang, P. J. J. Org. Chem. 1976, 41, 3034.

⁽¹³⁾ Metzger, R. M.; Wiser, D. C.; Laidlaw, R. K.; Takassi, M. A.; Mattern, D. L.; Panetta, C. A. *Langmuir* **1990**, *6*, 350.

⁽¹⁴⁾ Percec, V.; Heck, J. J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 591.

distilled on a rotary evaporator, and the product was used immediately in the next step.

General Procedure for the Synthesis of $(4-3,4-(3,4,5)^{n-1})$ 12Gn-CO₂CH₃. Methyl 3,4,5-Tris{3',4'-bis[p-(n-dodecan-1-yloxy)benzyloxy]benzyloxy}benzoate [(4-3,4-3,4,5)12G2-CO2CH3]. (4-3,4-3,4,5)12G2-CO₂CH₃ was synthesized according to a procedure elaborated in our laboratory.^{1,4-7} In a three-neck round-bottom flask equipped with a condenser, an N2 inlet-outlet, and a Teflon-coated magnetic stirrer, a mixture of K₂CO₃, DMF, and THF was thoroughly bubbled with N₂ for 1 h to eliminate O₂. Methyl 3,4,5-trihydroxybenzoate was added, and the mixture was heated to 70 °C, and then (4-3,4)12G1-CH₂Cl was added. After 3-5 h, the reaction was shown to be complete by a combination of TLC and ¹H NMR analyses. Starting from 1.79 g (9.72 mmol) of methyl 3,4,5-trihydroxybenzoate, 20.6 g (29.1 mmol) of (4-3,4)12G1-CH2Cl, and 12.1 g (87.6 mmol) of K2CO3 in a mixture of 200 mL of DMF and 20 mL of THF at 70 °C after 4 h, 16.3 g (76.3%) of white crystals was obtained after purification by column chromatography (basic, Al₂O₃; CH₂Cl₂) and recrystallization from acetone/ CH2Cl2 (3:1, 500 mL). Purity (HPLC): 99+%. TLC (3/1 hexane/ EtOAc): $R_f = 0.$ ¹H NMR (CDCl₃, δ , ppm, TMS): 0.88 (t, 18H, CH₃, J = 6.9 Hz), 1.26 (m, 108H, CH₃(CH₂)₉), 1.76 (m, 12H, CH₂CH₂-OAr), 3.84-3.96 (overlapped m, 15H, CH₂CH₂OAr, CO₂CH₃), 4.75 (s, 2H, ArCH2OAr, 4-(3') position), 4.90 (s, 2H, ArCH2OAr, 4-(4') position), 4.97 (s, 8H, ArCH2OAr, 3,5-(3',4') positions), 5.01 (s, 6H, ArCH₂OAr, 3,4,5 positions), 6.75-6.90 (overlapped m, 18H, ArH meta to CH₂OAr, 3,4,5-(3',4') positions, ArH (5') meta to CH₂OAr, 3,4,5positions, ArH (6') ortho to CH₂OAr, 3,4,5 positions), 7.06 (d, 3H, ArH (2') ortho to CH₂OAr, 3,4,5 positions, J = 2.9 Hz), 7.19–7.31 (overlapped m, 12H, ArH ortho to CH₂OAr, 3,4,5-(3',4') positions), 7.37 (s, 2H, ArH ortho to CO₂CH₃). ¹³C NMR (CDCl₃, δ , ppm, TMS): 14.2 (CH₃), 22.7 (CH₂CH₃), 26.1 (CH₂CH₂CH₂OAr), 29.4 (CH₃-(CH₂)₂CH₂), 29.7 (CH₃(CH₂)₃(CH₂)₅), 30.5 (CH₂CH₂OAr), 32.0 (CH₃-CH₂CH₂), 52.2 (CO₂CH₃), 67.6-68.0 (CH₂CH₂OAr, 3,4,5-[3',4'-(4")] positions), 70.5-71.2 (ArCH2OAr, 3,4,5-(3',4') positions and 3,5 positions), 74.8 (ArCH2OAr, 4 position), 109.4 (ArC ortho to CO2-CH₃), 113.9-115.1 (ArC meta to CH₂OAr, 3,4,5-(3',4') positions, ArC (2') ortho to CH₂OAr, 3,4,5 positions, ArC (5') meta to CH₂OAr, 3,4,5 positions), 120.8 (ArC (6') ortho to CH₂OAr, 3,5 positions), 121.6 (ArC (6') ortho to CH₂OAr, 4 position), 125.4 (ArC ipso to CO₂CH₃), 128.7-129.0 (ArC ipso to CH2OAr, 3,4,5-(3',4') positions, ArC ortho to CH2-OAr, 3,4,5-(3',4') positions), 129.9 (ArC ipso to CH2OAr, 3,4,5 positions), 142.2 (ArC para to CO₂CH₃), 148.9 (ArC para to CH₂OAr, 3,4,5 positions), 149.3 (ArC (3') meta to CH₂OAr, 3,4,5 positions), 152.6 (ArC meta CO₂CH₃), 158.9 (ArC para to CH₂OAr, 3,4,5-(3',4') positions), 166.3 (CO₂CH₃). Anal. Calcd for C₁₄₃H₂₀₆O₁₇: C, 78.17; H, 9.45. Found: C, 78.13; H, 9.57.

3,4,5-Tris{3',4'-bis[p-(n-dodecan-1-yloxy)benzyloxy]benzyloxy}benzyl Alcohol [(4-3,4-3,4,5)12G2-CH2OH]. Starting from (4-3,4-3,4,5)12G2-CO₂CH₃ (4.5 g, 2.05 mmol) and LiAlH₄ (0.09, 0.002 mol) in THF (140 mL) (4 h reaction time), a white solid (3.85 g, 86.7%) was obtained after recrystallization from a mixture of acetone/CH2Cl2 (1:2, 200 mL). Purity (HPLC): 99+%. Isotropic temperature: 197 °C. TLC (9/1 CH₂Cl₂/hexane): $R_f = 0.18$. ¹H NMR (CDCl₃, δ , ppm, TMS): 0.88 (t, 18H, CH_3 , J = 6.8 Hz), 1.26 (m, 108H, $CH_3(CH_2)_9$), 1.74 (m, 12H, CH₂CH₂OAr), 3.84-3.96 (overlapped m, 12H, CH₂CH₂-OAr), 4.54 (s, 2H, CH2OH), 4.77 (s, 2H, ArCH2OAr, 4-(3') position), 4.91 (s, 2H, ArCH2OAr, 4-(4') position), 4.93 (s, 2H, ArCH2OAr, 4 position), 4.96-4.97 (overlapped s, 12H, ArCH2OAr, 3,5-(3',4') positions, ArCH₂OAr, 3,5 positions), 6.62 (s, 2H, ArH ortho to CH₂-OH), 6.75-6.89 (overlapped m, 18H, ArH meta to CH₂OAr, 3,4,5-(3',4') positions, ArH (5') meta to CH₂OAr, 3,4,5 positions, ArH (6') ortho to CH2OAr, 3,4,5 positions), 7.06 (d, 3H, ArH (2') ortho to CH2-OAr, 3,4,5 positions, J = 7.0 Hz), 7.20–7.33 (overlapped m, 12H, ArH ortho to CH₂OAr, 3,4,5-(3',4') positions). ¹³C NMR (CDCl₃, δ , ppm, TMS): 14.1 (CH₃), 22.7 (CH₂CH₃), 26.1 (CH₂CH₂CH₂OAr), 29.4 (CH₃(CH₂)₂CH₂), 29.7 (CH₃(CH₂)₃(CH₂)₅), 30.5 (CH₂CH₂OAr), 31.9 (CH₃CH₂CH₂), 65.2 (CH₂OH), 68.0 (CH₂CH₂OAr, 3,4,5-[3',4'-(4")] positions), 71.2 (ArCH₂OAr, 3,4,5-(3',4') positions and 3,5 positions),

74.9 (Ar*C*H₂OAr, 4 position), 106.6 (Ar*C* ortho to CH₂OH), 114.4– 115.0 (Ar*C* meta to CH₂OAr, 3,4,5-(3',4') positions, Ar*C* (5') meta to CH₂OAr, 3,4,5 positions), 115.1 (Ar*C* (2') ortho to CH₂OAr, 3,4,5 positions), 120.4 (Ar*C* (6') ortho to CH₂OAr, 3,5 positions), 121.6 (Ar*C* (6') ortho to CH₂OAr, 4 position), 129.0 (Ar*C* ipso to CH₂OAr, 3,4,5-(3',4') positions, Ar*C* ortho to CH₂OAr, 3,4,5-(3',4') positions), 130.4 (Ar*C* ipso to CH₂OAr, 3,5 positions), 131.3 (Ar*C* ipso to CH₂OAr, 4 position, Ar*C* para to CH₂OH), 136.8 (Ar*C* ipso to CH₂OAr), 148.8 (Ar*C* para to CH₂OAr, 3,4,5 positions), 149.2 (Ar*C* (3') meta to CH₂-OAr, 3,4,5 positions), 153.0 (Ar*C* meta CH₂OH), 158.8 (Ar*C* para to CH₂OAr, 3,4,5-(3',4') positions). Anal. Calcd for C₁₄₂H₂₀₆O₁₆: C, 78.63; H, 9.57. Found: C, 78.82; H, 9.41.

3,4,5-Tris{3',4'-bis[*p*-(*n*-dodecan-1-yloxy)benzyloxy]benzyloxy}benzyl Chloride [(4-3,4-3,4,5)12G2-CH₂Cl]. (4-3,4-3,4,5)12G2-CH₂Cl was synthesized by the procedure described for the synthesis of (4-3,4)12G1-CH₂Cl. To a solution of 1.0 g (0.46 mmol) of (4-3,4-3,4,5)-12G2-CH₂OH and 0.38 g (1.85 mmol) DTBMP in 20 mL of dry CH₂Cl₂ was added 0.055 g (0.46 mmol) of SOCl₂ in 20 mL of CH₂-Cl₂. (4-3,4-3,4,5)12G2-CH₂Cl was used without purification in the next step.

Methyl 3,4,5-Tris(3',4',5'-tris $\{3'',4''$ -bis[p-(n-dodecan-1-yloxy)benzyloxy]benzyloxy}benzyloxy)benzoate [(4-3,4-(3,4,5)²)12G3-CO₂CH₃]. To a solution of methyl 3,4,5-trihydroxybenzoate (0.099 g, 0.54 mmol) and K₂CO₃ (0.669 g, 4.84 mmol) in a mixture of DMF (140 mL) and THF (40 mL) was added (4-3,4-3,4,5)12G2-CH₂Cl (3.53 g, 1.61 mmol) at 70 °C. After 6 h the mixture was worked up as described for (4-3,4-3,4,5)12G2-CO₂CH₃ to yield a white solid (1.67 g, 46.8%). Purity (HPLC): 99+%. TLC (20/1 hexane/EtOAc): $R_f =$ 1.00. ¹H NMR (CDCl₃, δ , ppm, TMS): 0.89 (t, 54H, CH₃, J = 6.6Hz), 1.27 (m, 324H, CH₃(CH₂)₉), 1.73 (m, 36H, CH₂CH₂OAr), 3.70-3.92 (overlapped m, 39H, CH₂CH₂OAr, CO₂CH₃), 4.57-5.13 (ovelapped m, 60H, ArCH2OAr), 6.56-6.90 (overlapped m, 60H, ArH meta to CH2OAr, 3,4,5-[3',4',5'-(3",4")] positions, ArH (5") meta to CH2-OAr, 3,4,5-(3',4',5') positions, ArH (6") ortho to CH2OAr, 3,4,5-(3',4',5') positions, ArH ortho to CH₂OAr, 3,4,5 positions), 6.96-7.26 (overlapped m, 45H, ArH ortho to CH2OAr, 3,4,5-[3',4',5'-(3",4")] positions, ArH (2") ortho to CH2OAr, 3,4,5-(3',4',5') positions), 7.47 (s, 2H, ArH ortho to CO₂CH₃). ¹³C NMR (CDCl₃, δ , ppm, TMS): 14.1 (CH₃), 22.7 (CH₂CH₃), 26.1 (CH₂CH₂CH₂OAr), 29.3 (CH₃(CH₂)₂CH₂), 29.6 (CH₃(CH₂)₃(CH₂)₅), 30.5 (CH₂CH₂OAr), 31.9 (CH₃CH₂CH₂), 52.2 (CO₂CH₃), 67.4-67.8 (CH₂CH₂OAr, 3,4,5-{3',4',5'-[3",4"-(4"')]} positions), 71.4 (ArCH₂OAr, 3,4,5-[3',4',5'-(3",4")] positions, 3,4,5-(3',5') positions and 3.5 positions), 74.8-74.9 (ArCH₂OAr, 3,4,5-(4') positions, 4 position), 107.0 (ArC ortho CH2OAr, 3,4,5 positions), 109.6 (ArC ortho to CO2CH3), 113.5-114.7 (ArC meta to CH2OAr, 3,4,5-[3',4',5'-(3",4")] positions, ArC (2") ortho to CH2OAr, 3,4,5-(3',4',5') positions, ArC (5") meta to CH₂OAr, 3,4,5-(3',4',5') positions), 120.6 (ArC (6") ortho to CH2OAr, 3,4,5-(3',5') positions), 121.4 (ArC (6") ortho to CH2-OAr, 3,4,5-(4') positions), 125.4 (ArC ipso to CO₂CH₃), 128.1-129.1 (ArC ipso to CH2OAr, 3,4,5-[3',4',5'-(3",4")] positions, ArC ortho to CH2OAr, 3,4,5-[3',4',5'-(3",4")] positions), 130.0 (ArC ipso to CH2-OAr, 3,4,5-(3',4',5') positions), 131.1 (ArC para to CH2OAr, 3,5 positions), 132.2 (ArC para to CH₂OAr, 4 position), 138.4 (ArC ipso to CH₂OAr, 3,4,5 positions), 142.2 (ArC para to CO₂CH₃), 148.8 (ArC para to CH₂OAr, 3,4,5-(3',4',5') positions), 149.2 (ArC (3") meta to CH₂OAr, 3,4,5-(3',4',5') positions), 152.6 (ArC meta to CO₂CH₃), 153.0 (ArC meta to CH₂OAr, 3,4,5 positions), 158.7 (ArC para to CH₂OAr, 3,4,5-[3',4',5'-(3",4")] positions), 166.3 (CO₂CH₃). Anal. Calcd for C₄₃₄H₆₂₀O₅₀: C, 78.53; H, 9.42. Found: C, 78.69; H, 9.31.

Acknowledgment. Financial support by the National Science Foundation (DMR-99-96288), the Engineering and Physical Science Research Council, UK, and the Synchrotron Radiation Source at Daresbury, UK, is gratefully acknowledged. We are also grateful to Professor S. Z. D. Cheng of University of Akron for density measurements.

JA0024643